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A thermoviscous steady shock is studied through its interaction with small-amplitude
perturbations introduced far behind the shock region and convected uniformly
towards it. It is assumed that a significant broadening of the shock region may
be brought about by the amplification of the fluctuations as they pass through it. The
scale of such broadening effects, however, is found to depend on the amplitude and
frequency of the induced fluctuations. Indeed, well-defined ranges of these parameters
determine the scale of the non-uniform part of the mean flow, and thus, of any effects
observed inside the shock region. For specific values of these parameters, we observe
not only a broadening, but also a deformation of the shock region. These results are
confirmed numerically using a pseudospectral scheme.

1. Introduction
In this paper we are concerned with the study of the structure of a thermoviscous

steady shock as it interacts, after some time, with small-amplitude fluctuations
introduced far behind the shock region. When dealing with nonlinear waves travelling
in non-dispersive media, the plane Burgers equation is often used as the simplest model
equation which exhibits both a nonlinear redistribution of energy across the spectrum
and the diffusive effects of viscosity over a small region; here, it is given as

ut + uux = νuxx. (1.1)

It is interesting to point out that for ν = 0 the plane Burgers equation (1.1) becomes
quite simply a scalar hyperbolic equation. For this type of equation, shocks appear
only as sharp discontinuities, and it was precisely because of this shortcoming that
equation (1.1) was suggested as a model capable of describing the structure of shock
waves in gas dynamics. From the study of the exact solutions to the ordinary Burgers
equation, we know that shocks will form in any wave with a compressive phase.
For moderate ranges we can use ‘weak-shock theory’ to predict the location of these
shocks and to determine their interior structure, which is resolved by thermoviscous
attenuation and is described by Taylor’s hyperbolic tangent solution. Taylor (1910)
obtained the thickness of the transitional region that results when rapid changes
in pressure are mitigated by diffusive effects, but he did not, however, establish the
relationship between shocks of this form and the Burgers equation. This task was
achieved later, by for example Bateman (1915) and Burgers (1948) himself.

† David Crighton died in April 2000 during the preparation of this paper.
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In the present work we study the low-diffusivity limit of the plane Burgers equation
when small-amplitude fluctuations are introduced behind the shock region. One of
the principal motivations behind this work concerns with observations on the manner
in which the generation of fluctuations influences the spatial width of shocks, also
known as shock rise time. This topic is discussed, for hydraulic jumps, by Martı́n Vide,
Dolz & del Estal (1993), for a shock induced in a thermoviscous fluid by the action
of an impulsive piston, by Moran & Shen (1993), and in more general circumstances,
by Dowling & Ffowcs Williams (1983), and Ffowcs Williams (1992). Averaging of the
mean profiles over a time cycle determined by the fluctuations yields a broadening
and a particular deformation of the shock profile, but only for very specific values
of the amplitude and frequency of the induced fluctuations. Thus, we have used
two parameters to determine a family of solutions such that the above behaviour is
observed. To obtain these results we have proceeded in the usual manner, first using
asymptotic analysis to obtain approximate solutions to the problem at hand, and then
implementing numerical methods, in this case a pseudospectral scheme, to confirm
the validity of these solutions.

2. Shock wave distortion due to fluctuations behind the shock
2.1. A simple model

In order to justify the approach which we employ in § 2.2, which contains the
main results of this paper, we discuss here a simple model where we consider a
single fluctuation introduced far behind a steady shock, and which is initially rigidly
convected, moving in the direction of the x-axis. We seek some deformation of a
region behind the shock caused by the introduction of this fluctuation. We thus begin
by considering the plane Burgers equation

ut + uux = νuxx, (2.1)

where the velocity u(x, t) is prescribed everywhere at a time t0; t is time, x is a
spatial coordinate in the frame of reference moving with the small-signal sound
speed a0, and ν is the diffusivity term. We are interested in solutions of the form
u(x, t) = U (x)+u′(x, t), where u′(x, t) is a fluctuation amplitude and U (x) is the mean
field that results from time-averaging over a random field of fluctuations behind a
steady shock wave, measured with respect to axes in which the mean profile U (x) is
at rest. By choosing the mean profile to be at rest in terms of the x-coordinate we
are, in fact, requiring the following boundary condition:

lim
x→−∞

U (x) + lim
x→∞

U (x) = 0. (2.2)

Substituting the desired form of the solution in equation (2.1), and averaging this
equation over time, where we use 〈 〉 to denote this operation, we arrive at the exact
mean and fluctuation equations:

UUx + 〈u′u′
x〉 = νUxx, (2.3)

u′
t + Uu′

x + u′Ux + u′u′
x − 〈u′u′

x〉 = νu′
xx. (2.4)

Above, we have also used the fact that 〈u′〉 =0. Now we continue by effectively
expanding both equations in powers of a small dimensionless amplitude u′/U , to
obtain

U0U0x
= νU0xx

, (2.5)

u′
t + U0u

′
x + u′U0x

= νu′
xx. (2.6)
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The solution to (2.5) is given by

U0(x) = −U+ tanh
U+x

2ν
, where lim

x→±∞
U0(x) = ∓U+, (2.7)

which is the Taylor description of a thermoviscous steady shock in the absence of
fluctuations, and which exhibits the same behaviour as the mean profile U (x) when
x → −∞, as given by the boundary condition (2.2); this solution is discussed in detail
by, among others, Whitham (1974). It is clear that further terms in this expansion
must be obtained so as to observe the behaviour sought, but first we will analyse the
propagation of the fluctuation behind the shock. In the following analysis, then, we
will be concerned only with the region behind the shock, x < 0. For the solution of
equation (2.6) it is necessary to consider an inner solution in the vicinity of the shock
to smooth out the discontinuity of an outer, lossless solution in this region (Van Dyke
1975). Now assume that as x → −∞ the field u′(x, t) has a typical magnitude u0 (for
example, the root mean square of the velocity perturbation), and a length scale L.
For x large and negative, we know the fluctuations to be rigidly convected,

u′
t + U+u′

x = 0; (2.8)

and from this expression we conclude that the time scale to use as x → −∞ is L/U+.
We can now consider equation (2.6) with U0(x) given by the Taylor shock solution
(2.7), and with the appropriate dimensionless variables û = u′/u0, x̂ = x/L, t̂ = U+t/L:

U+u0

L
ût̂ − U+u0

L
tanh

(
U+Lx̂

2ν

)
ûx̂ − u0 û

U 2
+

2ν
sech2

(
U+Lx̂

2ν

)
=

νu0

L2
ûx̂x̂ .

Writing R = U+L/ν � 1, with R a Reynolds number, relating the contribution of
nonlinearity to that of diffusivity, dropping the hats, and simplifying the above
expression, we obtain

ut − tanh
(

1
2
Rx

)
ux − 1

2
Ru sech2

(
1
2
Rx

)
=

1

R
uxx. (2.9)

For (x, t) =O(1), and since R � 1, we have

ut − ux = 0, (2.10)

which gives us the outer solution

uout(x, t) = v(t + x), (2.11)

where, as x → −∞, u′ ∼ u0v(t + x). This lossless solution is clearly invalid when the
inner variable X = Rx =O(1). In this region we rewrite equation (2.9) in terms of
ζ = 1

2
X and a small parameter δ =2/R as

δ
∂u

∂t
− ∂

∂ζ
(u tanh ζ ) =

1

2

∂2u

∂ζ 2
. (2.12)

To leading order, this equation yields the general inner solution to the problem, given
by

uin(ζ, t) = C1(t) sech2ζ + C2(t)(ζ sech2ζ + tanh ζ ). (2.13)

Notice that ζ has been defined so as to be a Taylor variable, the natural coordinate
of the Taylor shock solution, so that U0 = U+ tanh ζ . It is now possible to match the
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Figure 1. (a) The function f (ζ ) defined by (2.16); (b) the function g(ζ ) defined by (2.23).

inner and outer solutions, for x < 0, by equating

lim
ζ→∞

uin = lim
x→0−

uout,

so as to obtain C2(t) = v(t).
To obtain C1(t) we require the O(δ) part of equation (2.12) to vanish as well, giving

as a result

∂uin

∂t

∣∣∣∣
ζ=0

= 0. (2.14)

From (2.13) we have that uin(ζ =0, t) = C1(t), and thus, we see that C1(t) = constant=
C. In this case, though, Csech2ζ is a steady quantity, and corresponds simply to a
change in the origin of the mean profile, so that if we take C to be already accounted
for in the choice of origin, we can then simply choose C = 0, in which case the inner
solution is given by

uin = v(t)f (ζ ), (2.15)

f (ζ ) = ζ sech2ζ + tanh ζ. (2.16)

The multiplicative composite solution, formed from (2.11) and (2.15) will then be

u(x, t) ∼ v(t − x)f (ζ ). (2.17)

A simple analysis of f (ζ ), given by (2.16), reveals that as ζ → ∞, f (ζ ) → 1, and since
tanh ζ ∼ ζ for very small ζ , f (ζ ) ∼ 2ζ for ζ → 0+. After calculating f ′(ζ ) and equating
to zero, we see that a maximum will occur for tanh ζM = ζM ; this maximum value
is fM = f (ζM ) = ζM (1 − ζ −2

M ) + ζ −1
M = ζM . The functionf (ζ ) is illustrated in figure 1(a).

The fluctuation amplitude is seen to remain almost constant outside the inner region,
but as the fluctuation enters this region, the amplitude first increases, and then rapidly
decreases.

If we now return to dimensional variables and expand the mean field again in terms
of a small, dimensionless parameter, now u0/U+, as U = U0 + (u0/U+)2U2 + · · ·, the
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full equation for the mean field (2.3) becomes(
u0

U+

)2
∂

∂x
(U0U2) + U0

∂U0

∂x
+

(
u0

U+

)4

U2

∂U2

∂x
+

(
u0

U+

)2
U 2

+

2

∂

∂x
〈u2〉

= ν

(
∂2U0

∂x2
+

(
u0

U+

)2
∂2U2

∂x2

)
,

and, since u′ = O(u0), we match second-order terms to obtain

∂

∂x
(U0U2) +

U 2
+

2

∂

∂x
〈u2〉 = ν

∂2U2

∂x2
. (2.18)

If we consider, as before, that away from the shock region the diffusive term may
be neglected, and consider as well that U2 → 0 as x → −∞, this equation can be
integrated, from x → −∞ to x < 0, to give

U0U2 +
U 2

+

2
〈u2〉 =

U 2
+

2
, (2.19)

which is an algebraic equation that can be solved easily using the fact that 〈v2〉 =1,
and thus 〈u2〉 = f 2(ζ ):

U2 =
U+(1 − f 2(ζ ))

2 tanh ζ
. (2.20)

The mean flow correction U2, though, becomes very large for ζ → 0−, which
indicates that the effects of diffusion cannot be neglected in the vicinity of the shock,
and thus, in this inner region, the diffusive term should be reinstated. This time, by
integrating from −∞ to x, we obtain, instead of an algebraic equation for U2 as in
(2.19), a differential equation,

U0U2 +
U 2

+

2
(〈u2〉 − 1) = ν

∂U2

∂x
. (2.21)

Integrating once more we arrive at

U2 = −D

(
U+

u0

)2

sech2ζ + U+(ζ sech2ζ − ζ 2 tanh ζ sech2ζ ),

where D is a constant which, as was the case with C, can be absorbed into the
definition of U0. This solution can be written, alternatively, as

U2(x) = U+g(ζ ), (2.22)

g(ζ ) = ζ sech2ζ (1 − ζ tanh ζ ), (2.23)

where g(ζ ) can be analysed in much the same way f (ζ ) was. To first order, g(ζ ) ∼ ζ

as ζ → 0, and ζ → 0− as ζ → ∞, so this function has at least one zero for ζ > 0.
Equating the derivative of g(ζ ) to zero to look for critical points, we obtain the
condition 1 − 4ζ tanh ζ − ζ 2(1 − 3 tanh2 ζ ) = 0; two roots exist for ζ > 0, and they are
approximately ζ1 = 5−1/2 and ζ2 = 1+2−1/2, the first one corresponding to a maximum
and the second to a minimum; see figure 1(b). It is not difficult to see that these
results can be carried through ζ = 0, and that the fields u′, U2 decay monotonically
and exponentially ahead of the shock.

The unsophisticated model employed in this section has permitted the observation
of an interesting effect: a region behind the shock is seen where the fluctuations cause
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the gradient ∂U/∂x to be affected, albeit to a small degree, by the Reynolds stress
〈u′2〉. Elsewhere, the gradient is controlled by the viscous stress, as it would be in the
absence of fluctuations. We would like to observe, however, such an effect to take place
at a larger scale; the effects of these fluctuations are very small, uniformly O(u2

0/U 2
+)

relative to the undisturbed components. Experiments on hydraulic jump propagation
suggest that more noticeable effects should be produced by these fluctuations. The
fluctuations in this case fail to produce larger-scale effects because they are uniformly
convected (see (2.17)) everywhere except for a narrow region of width x = O(1/R),
where they are quickly suppressed by diffusion. In order to observe a more significant
amplification of the fluctuations in the mean flow we must broaden the scale of
the non-uniform part of the mean flow to values much larger than 1/R, and this
broadening must be itself due to the fluctuations as they amplify. In the next section
we construct a self-consistent model in which the field in which the fluctuations
propagate is determined mainly by the fluctuations themselves.

2.2. A self-consistent mean field theory

In the previous section, we assumed the mean profile was given by the Taylor
hyperbolic tangent solution corrected by a small perturbation which only became
significant in a thin region behind the shock centre. In the following analysis, the
only assumptions made with regard to the mean profile concern its behaviour close to
the origin and as x tends to infinity in both directions. Crucially, the Reynolds stress
term in the mean field equation (2.3) is retained, and will eventually determine the
conditions necessary for a significant broadening of the shock region and distortion
of the shock profile to occur. We again start from the mean and fluctuation equations
(2.3) and (2.4), and again we linearize (2.4) in u′:

u′
t + Uu′

x + u′Ux = νu′
xx. (2.24)

We now also integrate (2.3):

1

2

dU 2

dx
+

1

2

∂〈u′2〉
∂x

= ν
dUx

dx
,

supposing that far behind the shock U → U− and the Reynolds stress 〈u′2〉 → u2
0,

and far ahead of the shock U → − U+, 〈u′2〉 → 0, with both U+, U− strictly positive.
Integrating once more, now from −∞ to x, we obtain the mean field equation,

1
2
U 2 + 1

2
〈u′2〉 = νUx + 1

2
U 2

+, (2.25)

and integrating now from −∞ to +∞ we see that

U 2
− + u2

0 = U 2
+. (2.26)

There are two independent dimensionless parameters that we will consider for this
problem: the first is a fluctuation amplitude ε = u0/U−, and the second is a Reynolds
number R− = U 2

−/2νω, where ω is a typical frequency of the fluctuations. We take the
origin of coordinates to be such that U (0) = 0, and assume

U ∼ −βx near x = 0, (2.27)

for some β > 0 which will be determined later from a nonlinear eigenvalue problem.
We now transform u′(x, t) as follows:

u′(x, t) =

∫ ∞

−∞
ũ(x, ω) e−iωt dω, (2.28)
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so that (2.24) becomes

Uũx + (Ux − iω)ũ = νũxx. (2.29)

We can easily find a solution to the above equation if we ignore the diffusive term,
by using the integrating factor exp(−iωΦ(x)), where

Φ(x) =
x

U−
+

∫ x

−∞

(
1

U (s)
− 1

U−

)
ds.

The use of this integrating factor permits us to write equation (2.29) as follows:

d

dx

[
U (x)e−iωΦ(x)ũ(x, ω)

]
= 0,

and thus

ũ(x, ω) =
f (ω)

U (x)
eiωΦ(x), (2.30)

with f (ω) still to be determined. We now consider ṽ(ω) to be the Fourier component
of u′(x, t) as x → −∞ such that

lim
x→−∞

u′(x, t) = v′
(

t − x

U−

)

=

∫ ∞

−∞
ṽ(ω)e−iω(t−x/U−) dω,

which simply means that fluctuations will be rigidly convected at speed U− for x very
large and negative, up to a point where u′(x, t) deviates from U− and its evolution
is characterized by the amplification and distortion factors seen in equation (2.30),
which we write in the following manner:

ũ(x, ω) =
U−

U (x)
ṽ(ω)eiωΦ(x). (2.31)

It will now be possible to obtain the Reynolds stress 〈u′2(x, t)〉 when x → −∞, since,
from (2.31) and the definition of ṽ(ω),

u′(x, t) =
U−

U (x)

∫ ∞

−∞
ṽ(ω)e−iω(t−Φ(x)) dω

=
U−

U (x)
v′(t − Φ(x)),

and then

〈u′2(x, t)〉 =

(
U−

U (x)

)2

u2
0,

where 〈u′2(x, t)〉 → 〈v′2(t)〉 = u2
0 as x → −∞.

However, we can easily see that the solution (2.31) is not uniformly valid near x =0
by analysing the orders of magnitude of each of the four terms in equation (2.29) in
this region, using both (2.27) and (2.31) for this purpose:

Uũx = O(U−/x),

Uxũ = O(U−/x),

iωũ = O(ωU/βx),

νũxx = O(νU−/βx3).



8 P. L. Rendón and D. G. Crighton

It will be clear now that we cannot readily ignore the diffusive term in the region
near x = 0, and thus for this inner region we employ a self-consistent approach, in
which we must consider all four terms as comparable, with no assumptions regarding
the order of β made until its defining equation is found. The one simplification we
will make consists of considering U ∼ −βx, as in (2.27), so that dU/dx ∼ −β , and
then substituting in equation (2.29), so that in some inner region we have

−βxũx − (β + iω)ũ = νũxx, (2.32)

which we will transform using the following change of variables:

x =

√
ν

β
ξ, ũ(x, ω) = e−βx2/4νΨ (ξ, ω), (2.33)

so that

ũx = e−βx2/4ν

(
−βx

2ν
Ψ +

√
β

ν
Ψξ

)
,

ũxx = e−βx2/4ν

{[(
βx

2ν

)2

− β

2ν

]
Ψ − x

(
β

ν

)3/2

Ψξ +
β

ν
Ψξξ

}
.

The resulting equation will be Weber’s equation,

Ψξξ +

(
1

2
+

iω

β
− ξ 2

4

)
Ψ = 0, (2.34)

the solutions of which are the parabolic cylinder functions, D in the notation of
Whittaker & Watson (1980). If we now introduce a Strouhal number σ =ω/β , which
relates the frequency to the inverse of the time in which a given particle crosses the
inner region, we can write the general solution to the problem as a sum of two linearly
independent solutions,

Ψ (ξ, ω) = A(ω)Diσ (ξ ) + B(ω)D−iσ−1(iξ ), (2.35)

which is an analytical expression, and thus removes the singularity present in the
outer solution at x =0. We will now use asymptotic matching to determine A and
B in order to obtain the necessary transition expression through x = 0; it will be
necessary to use asymptotic expansions of the parabolic cylinder functions for large
|ξ |. From Whittaker & Watson we know that for large ξ and |argξ | < 3

4
π,

Dn(ξ ) ∼ e−ξ 2/4ξn

[
1 − n(n − 1)

2ξ 2
+

n(n − 1)(n − 2)(n − 3)

2 × 4ξ 4
− · · ·

]
, (2.36)

so that, in our case, using only the first term of the above expansion, for ξ → ∞,

Ψ ∼
[
Ae−ξ 2/4ξ iσ + Beξ 2/4

(
eiπ/2ξ

)−iσ−1]
(1 + O(ξ−2)). (2.37)

If we were to set B = 0, the above field would decay very rapidly ahead of the shock;
in fact, it would do so like exp(−ξ 2/2). If, on the other hand, we were to set A= 0,
the field would decay like ξ−1 ahead of the shock, which is to say very slowly indeed;
in this case it would not be possible to match this solution to the outer solution
given by (2.31). Thus, we set B = 0 and now proceed to determine the value of A by
matching these solutions. The appropriate expansion as ξ → −∞, with B = 0, is given
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by

Ψ ∼ A

√
2π

�(−iσ )
e−πσ+ξ 2/4(eiπ|ξ |)−iσ−1, (2.38)

and reverting to the original variables by means of (2.33) this expression becomes

ũ(x, ω) ∼ A

√
2π

�(−iσ )

(
β

ν
|x|

)−iσ−1

. (2.39)

This solution must now be made to match the inner asymptotics of (2.31), and in
doing so we will find the appropriate value of A(ω). The solution (2.31) as x → 0− is
given by

ũ(x, ω) ∼ U−|x|iσ
β|x| ṽ(ω)eiωΩ, (2.40)

where

Ω(x) =
ln |x0|

β
+

∫ x0

−∞

(
1

U (s)
− 1

U−

)
ds +

∫ 0

x0

(
1

U (x)
− 1

(−βs)
− 1

U−

)
ds,

for an arbitrary x0 < 0.
It now becomes straightforward to match inner and outer solutions as x → 0−; by

doing so, we obtain the previously undetermined value of A:

A(ω) =
�(−iσ )√

2π

(
β

ν

)(iσ+1)/2
U−ṽ(ω)

β
eiΩ. (2.41)

Since Ψ =A(ω)Diσ (ξ ), we now have, by virtue of (2.33),

ũ(x, ω) = e−βx2/4νA(ω)Diσ (ξ ),

and since we will, in the end, be interested in calculating the Reynolds stress, or
fluctuation energy, 〈u′2(x, t)〉, we combine this inner solution and the outer solution
(2.31) in a multiplicative composite,

ũ(x, ω) ∼

[
U−

U (x)
ṽ(ω)eiωΦ(ω)

] [
e−βx2/4νA(ω)Diσ (ξ )

]
√

2π
�(−iσ )

A(ω)

(
ν

β

)(iσ+1)/2

|x|−iσ−1

=
�(−iσ )√

2π

(
β

ν

)(iσ+1)/2
U−|x|
U (x)

Diσ (ξ )ṽ(ω) exp

(
−βx2

4ν
+i(ωΦ +σ ln |x|)

)
, (2.42)

which is clearly finite at x = 0 since U (x) ∼ −βx in the vicinity of this point.
For x > 0 we want the fluctuations to decay very rapidly ahead of the shock, so

we simply use the inner solution

u(x, ω) = Ae−βx2/4ν

for the entire domain. Referring to (2.37), we can establish that this solution will
decay like exp(−βx2/2ν) ahead of the shock.

2.3. Spectral representation

The power spectral density of a given function is the Fourier transform of its
autocorrelation function, and it essentially represents the average rate of energy flow.
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Using the Fourier inversion theorem we may express the fluctuation energy 〈u′2(x, t)〉
in terms of its power spectral density S(x, ω),

〈u′2(x, t)〉 =

∫ ∞

−∞
S(x, ω) dω, (2.43)

so that

〈ũ(x, ω)ũ(x, ω′)〉 = S(x, ω)δ(ω + ω′). (2.44)

For more information on the statistical properties and manipulation of spectra and
their Fourier transforms, we refer the reader to books by Gurbatov, Malakhov &
Saichev (1991) and Lumley (1970). Using the multiplicative composite (2.42) in this
last expression, we arrive at

S(x, ω)δ(ω + ω′) =
�(−iσ )�(−iσ ′)

2π

(
U−|x|
U (x)

)2 (
β

ν

)i(σ+σ ′)/2

Diσ (ξ )Diσ ′(ξ )

× 〈ṽ(ω)ṽ(ω′)〉 exp

(
− 1

2
ξ 2 + i(ω + ω′)

(
Φ +

1

β
ln |x|

))
, (2.45)

where σ ′ corresponds to ω′. At this point we introduce S0(ω), the power spectral
density of the convected fluctuations as x → −∞, such that 〈ṽ(ω)ṽ(ω′)〉 = S0(ω)δ(ω+ω′).
Therefore,

S(x, ω)

S0(ω)
=

|�(−iσ )|2
2π

(
U−|x|
U (x)

)2
β

ν
|Diσ (ξ )|2e−ξ 2/2

=
1

2νω sinh πσ

(
U−β|x|
U (x)

)2

|Diσ (ξ )|2e−ξ 2/2, (2.46)

where we have used the relation |�(−iσ )|2 = π/(σ sinh πσ ). This equation is a basic
result of this theory, giving the power amplification of any given spectral component
in an arbitrary mean field U (x) such that (2.27) is valid near x = 0.

Let us now consider only narrowband fluctuations of the form

S0(ω) = 1
2
u2

0[δ(ω − ω0) + δ(ω + ω0)], (2.47)

so that the fluctuation energy is concentrated within a frequency band of width 2ω0.
This bandwidth is determined by the autocorrelation of the signal v′(t) , which is of the
form cos(ω0t); notice that S0(ω) is essentially the Fourier transform of such a cosine
wave. Integration of equation (2.46) is straightforward after we have substituted this
form of S0(ω) in the equation; we obtain

〈u′2(x, t)〉 =
u2

0

2νω sinh πσ

(
U−β|x|
U (x)

)2

|Diσ (ξ )|2e−ξ 2/2, (2.48)

where we have dropped the suffix 0 from ω, and consequently from σ as well.
Notice that ω and u0, the frequency and amplitude of the fluctuations introduced
behind the shock, completely determine the values of the two parameters introduced
previously, R− and ε, since U± and ν are fixed. They will be seen to determine
families of solutions for which the process of averaging over time will yield very
different results with respect to the mean profile. The regions to which these different
results correspond will be established in the next section.
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2.4. A nonlinear eigenvalue problem

The mean field equation (2.25) can be used to set up an eigenvalue problem which
we can use to determine the values of β that correspond to different values of the
parameters discussed in the previous section. We begin by substituting the expression
for the fluctuation energy (2.48) into the mean field equation (2.25):

1
2
U 2(x) +

u2
0

4νω sinh πσ

(
U−β|x|
U (x)

)2

|Diσ (ξ )|2e−ξ 2/2 = ν
dU

dx
+ 1

2
U 2

+. (2.49)

Now, to take advantage of the fact that (2.27) gives the behaviour of U (x) near 0, we
will consider this last equation as x → 0−, but first we need the following expression,
taken from Abramowitz & Stegun (1972), for the magnitude of the parabolic cylinder
functions at x = 0:

Diσ (0) =
1√
π

cosh

(
πσ

2

)
�

(
1
2

+ 1
2
σ
)

2−iσ/2
,

which, on using |�( 1
2

+ iz)|2 = πsechπz, yields

|Diσ (0)|2 = cosh2

(
πσ

2

)
sech

(
πσ

2

)
= cosh

(
πσ

2

)
.

The resulting equation is

u2
0

8νω sinh
(

1
2
πσ

)U 2
− = −βν + 1

2
U 2

+, (2.50)

which is a nonlinear eigenvalue problem for β . It is more convenient, though, to write
this equation in terms of σ =ω/β , where both ω and σ are known, as well as u0, U±
and ν: (

u2
0

νω

) (
U 2

−
νω

)
1

8 sinh
(

1
2
πσ

)
+ 1/σ

=
U 2

+

2νω
. (2.51)

Furthermore, by defining q0 = u2
0/2νω and Q± = U 2

±/2νω, with these variables related
by Q+ = q0 + Q− (see equation (2.26)), we may write

1 +

(
1
2
πσ

sinh
(

1
2
πσ

)
)

q0Q−

π
= Q+σ. (2.52)

For simplicity in what follows, let ψ = (πσ/2)/(sinh(πσ/2)). It is easily verified that
as σ → 0, ψ(σ ) → 1 and as σ → ∞, ψ(σ ) → 0; moreover, ψ(σ ) decreases monotonically.
In figure 2 we plot the straight line Q+σ and the curve 1 + (q0Q−/π)ψ(σ ); it is quite
easy to see that for all real and positive Q±, q0 there is a unique positive root of
the equation (2.52) for σ . It follows that to each ω > 0 there corresponds a unique
positive value of the gradient parameter β .

Three different limiting cases will arise, which can be best understood by means of
figure 2, where ψ(σ ) has been approximated by ψ(σ ) ∼ 1 for σ � 1, ψ(σ ) ∼ 0 for
σ > 1. Then, we see that if Q+ < 1 + q0Q−/π the solution of (2.52) is σQ+ ∼ 1 and
thus σ ∼ Q−1

+ , while if Q+ � 1 + q0Q−/π the solution is σ ∼ (1 + q0Q−/π)Q−1
+ . The

three relevant ranges which arise are

A: q0Q− � 1 ⇒ σ ∼ Q−1
+ , (2.53)

B: 1 � q0Q− � Q+ ⇒ σ ∼ (1 + q0Q−/π)Q−1
+ , (2.54)

C: q0Q− � Q+ ⇒ σ ∼ Q−1
+ . (2.55)
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σ Q+

σ1

1
1 

+
 q

0 
Q

– 
π

1 +
 q0 Q–

φ (σ)
π

Figure 2. Graphical solution of the nonlinear eigenvalue problem for β . Both ψ(σ ) and its
approximation by a step function are shown; the approximation is shown as a dotted line.

At this point we introduce a new parameter α > 0, defined by the following relation:

Q− ∼ ε−α. (2.56)

Recall that ε = u0/U− � 1 (note that ε2 = q0/Q−, and that this is essentially the
amplitude of the fluctuations), and R− = U 2

−/2νω = Q−; thus, α is related to both the
amplitude and the frequency of the fluctuations. It is now possible to find a set of
values of α that correspond to the different regions described above. In region A, by
writing the condition (2.53) in terms of the new parameters ε and α, we arrive at
ε2(1−α) � 1, and thus, since ε � 1, we conclude that α < 1. In the same manner, for
region C we obtain εα−2 � 1, and therefore α > 2. It follows immediately that range
C corresponds to 1 < α < 2.

It is important to point out that although the three ranges defined above in terms
of values of q0 and Q± determine three different ranges of α, the contrary is not
generally true. This consideration will be especially important later on, in the context
of numerical experiments, where we will study the different behaviours of solutions
depending on the range within which they fall.

For ranges A and C, β ∼ ωQ+ = U 2
+/2ν which is precisely the same value as would

be expected for a Taylor shock solution in the absence of fluctuations. In this case
we do not observe any significant broadening of the shock profile on account of the
fluctuations introduced behind the shock. Using the same method as in § 2.1 it is
seen that the shock remains thin, that the deviations are O(ε2) everywhere, and that
the shock is controlled by molecular diffusion and not the wave fluctuations. We are
looking for values of the parameters ε and R− (or, equivalently, u0 and ω) such that
the eigenvalue β has a value much less than the predicted Taylor value. This sort of
effect clearly will take place only for parameters in range B, where σ ∼ q0/π is the
approximate root of (2.52), and thus β ∼ ωπ/q0. Since the region defined by (2.54)
can also be written as Q−1

− � q0 � 1, it is clear that σ � 1, but also that σ in this
case will be much larger than the value Q−1

+ which it takes in the regions where there
is no significant shock broadening. Also, the gradient factor β is smaller by a factor
O(1/q0Q−) � 1 than its value in the unperturbed Taylor shock.
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2.5. The mean profile for parameters in region B

In this section we will assume that u0 and ω fall within region B, in which we expect
to observe the desired effects of shock broadening and mean profile distortion. In this
case, recall from the previous section that σ ∼ q0/π � 1 and that β ∼ πω/q0. Writing
the mean profile equation (2.49) in terms of the previously defined variables, q0 and
Q±, we obtain

1
2
U 2(x) +

Q−q0νω

sinh πσ

(
β|x|
U (x)

)2

|Diσ (ξ )|2e−ξ 2/2 = ν
dU

dx
+ 1

2
U 2

+. (2.57)

For σ very small, we can write sinh πσ ∼ πσ ∼ q0, and so the previous equation now
reads

1
2
U 2(x) + π2Q−νω

(
ω|x|

q0U (x)

)2

|Diσ (ξ )|2e−ξ 2/4 = ν
dU

dx
+

1

2
U 2

+. (2.58)

We now introduce two new variables,

y =
U (x)

U+

, X =
U+x

2ν
; (2.59)

the second, X, is known as the Taylor variable. We now write the mean profile
equation (2.58) as

πξ 2

2

(
Q−

q0Q
2
+

)
|Diσ (ξ )|2e−ξ 2/4 = y2

[
dy

dX
+ 1 − y2

]
. (2.60)

In order to establish natural inner and outer coordinates for this problem we
observe that in region B, β ∼ ωπ/q0, so that

X =
U+

2ν

√
νq0

ωπ
ξ.

Making use of the fact that in this region
√

q0 = ε
√

Q− and Q± ∼ ε−α we find

X =

√
U 2

+

2νω

Q−

2π
ε ξ =

√
Q+Q−

2π
ε ξ ∼ ε1−α

√
2π

ξ. (2.61)

Since 1 − α < 0 it becomes clear that X is the natural inner coordinate for the mean
profile and ξ is an outer coordinate. Later on we will see that a further inner-inner
coordinate will be needed to resolve the structure of the mean profile near X = 0. In
the meantime, for this region we have

σ ∼ q0

π
=

ε2Q−

π
∼ ε2−α

π
,

so that σ = O(ε2−α) → 0, and then, using (2.36), for ξ = O(1) and σ � 1 we write

Diσ (ξ ) ∼ e−ξ 2/4 + O(σ ). (2.62)

Thus, for ξ = O(1),

πξ 2

2

(
Q−

q0Q
2
+

)
e−ξ 2/2 = y2

[
dy

dX
+ 1 − y2

]
, (2.63)

but (Q−/q0Q
2
+) ∼ ε2(α−1), so we write

πQ−

2q0Q
2
+

= λε2(α−1).
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ε2
ε2(α–1)

U

Taylor shock form

U ~ –βx

ξ = O(1)

U–

ξ

–U+

Figure 3. Overall portrait of mean profile structure for values of the parameters in region B.
Large-scale deviation effects can be observed at ξ = 0, and smaller-scale ones are predicted at
ξ = −1. The initial amplitude of the perturbations is O(ε2).

It is also possible, on account of (2.61), to write X =µε1−αξ . We can now rewrite
equation (2.63) as

λε2(α−1)ξ 2e−ξ 2/2 =
εα−1

µ
y2 dy

dξ
+ y2(1 − y2). (2.64)

We now look for an asymptotic approximation to the solution of equation (2.64), in
the form

y(ξ ) ∼ y0(ξ ) + εα−1y1(ξ ) + ε2(α−1)y2(ξ ) + · · · .
After substituting in equation (2.64) and equating powers of ε, we arrive at the outer
solution

y(ξ ) = 1 − ε2(α−1) 1
2
λξ 2e−ξ 2

+ o
(
ε2(α−1)

)
, (2.65)

where we can see that the mean profile distortion for ξ = O(1) is of the order of
ε2(α−1), which can be quite large since α can be arbitrarily close to 1, whereas for
ξ → −∞ we have

lim
ξ→−∞

y(ξ ) =
U−

U+

=

(
Q−

Q+

)1/2

= 1 − 1
2
ε2 + · · · . (2.66)

Therefore, the mean profile distortion increases considerably from the value of ε2 it
has as ξ → −∞, to ε2(α−1) for ξ =O(1), as is illustrated in figure 3. The small-scale
effects observed in § 2.1 have been amplified here due to the broadening of the region
behind the shock where the gradient is affected by the fluctuation energy. To complete
the portrait of y in this region we look at its derivative as obtained from (2.65),

dy

dξ
∼ λe2(α−1)−ξ 2

ξ (1 − ξ 2) + o
(
ε2(α−1)

)
, (2.67)

so that
dy(0)

dξ
=

dy(−1)

dξ
= 0.
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From the above we conclude that y decreases with increasing ξ from the value given
by (2.66) for ξ large and negative up to the point ξ = −1, where it attains a minimum
value ymin = 1 − 1

2
λe−1ε2(α−1) + o(ε2(α−1)). Between ξ = −1 and ξ =0, y increases,

approaching a maximum value ymax = 1 + o(ε2(α−1)) as ξ → 0−. Notice then that the
value of y at ξ = 0 represents an overshoot from the value of y as ξ → −∞, and that
the minimum at ξ = −1 may be quite pronounced if α is close to 1.

As we have already mentioned, the region X =O(1) deserves special study; in this
region, in general, we have y =O(1), so that we may write y(X) = ŷ(X) + o(1), and
substituting in equation (2.64) leads to

ŷ2

(
dŷ

dX
+ 1 − ŷ2

)
= 0,

which has a singular point at X = 0. Considering, for the moment, ŷ > 0 only, we
have

dŷ

dX
+ 1 − ŷ2 = 0. (2.68)

The solution to this equation must match, as X → −∞, with the value taken by the
outer solution as ξ → 0−. From (2.65) we see that this value is 1, and thus the solution
to (2.68) we are looking for is

ŷ(X) = − tanh(X − X0), (2.69)

since ŷ(X) → 1 as X → −∞. X0 is a constant undetermined by the matching, but we
can easily eliminate it by setting ŷ(0) = 0. Now, however, a difficulty arises: the value
of (dy/dX)(0) calculated using the Taylor solution (2.69) is −1, while the nonlinear
eigenvalue problem yields the much smaller value (

√
λε2(α−1))/µ. A curious feature of

this problem, as is now seen, is that it will be necessary to give the inner solution
further internal substructure to resolve the discontinuity at ξ = 0 and construct a
solution with the necessary gradient adjustment at the origin.

We return to the complete equation (2.64), which we now write in terms of X

instead of ξ , and using ε = εα−1:

λ

(
ε2X

µ

)2

exp(−(εX/µ)2) = y2

(
dy

dX
+ 1 − y2

)
. (2.70)

For y, X both very small it is possible to make a uniform approximation of this
equation,

y2 dy

dX
+ y2 = δ2X2, (2.71)

with δ =
√
λε2/µ � 1. This equation can, in principle, be solved exactly by writing

the solution in the form y = XY (X, δ), and substituting in the above equation:

Y 2

(
X

dY

dX
+ Y + 1

)
= δ2,

or

Y 2dY

P (Y )
= −dX

X
, (2.72)

where P (Y ) = Y 3 + Y 2 − δ2. However, the presence of δ2 in P (Y ) makes it impossible
to integrate by partial fractions, so we resort instead to a perturbation approach to
the original equation (2.71). In the discussion that follows we refer to the first term on
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the left as (I), the second term on the left as (II), and to the term on the right-hand
side as (III). Assuming X = O(δβ) and y = O(δγ ), with β, γ > 0 we find that it is
possible to balance (II) with (III) in such a way that (I) is smaller than (II) by a
factor of δ, with δ � 1, in which case we then have y ∼ ±δX. Since we want to match
this solution to (2.71) with the Taylor solution (2.69) at some point in the interior of
the shock, and since in this region ŷ = −X + O(X3), we consider X = O(y). Then we
can balance (I) with (II), and term (III) is smaller than either by a factor δ2; if we
ask for y not identically zero, this yields the solution y ∼ −X.

This solution will then behave like −X for X = O(y) and X negative, and like −δX

for X very small and negative. Notice that this solution will then match the limit of the
Taylor solution (2.69) to the left, and will behave in the required manner (U ∼ −βx)
as X → 0−. Thus, we are presented not only with a broadening of the shock region,
but with a very particular deformation of it, where as X → 0− we observe initially a
steepening that coincides with that which would be expected of a Taylor shock, but
which becomes much less pronounced as the solution passes through X = 0, and then
becomes steeper once again before matching onto the outer solution for X > 0 (the
matching against the inner asymptotics of (2.69) is done in a completely analogous
manner to that already done for X < 0). The outer limit of solution (2.69) as X → ∞ is
y = −1 (or U = − U+), with exponentially small error. It is seen that the fluctuations,
which almost vanished for ξ → 0−, where the mean profile attained its maximum
value, dominate once more in the middle of the shock region, but fail to penetrate
X = 0 to any algebraic order.

A complete portrait of the mean profile structure is now possible when the
parameters are such that they allow the shock to broaden; see figure 3.

3. Numerical results
There exist a variety of ways in which to approach numerical solutions of nonlinear

parabolic equations such as Burgers equations. Since the problems that we are
interested in involve shocks and their evolution over arbitrarily long time periods,
the numerical methods used must be able to cope with such exigencies, as well as
satisfy the usual conditions for stability, convergence and small truncation error;
they must also be reasonably economical with respect to computational time. The
first scheme to be implemented was the well-known Douglas–Jones (1963) predictor–
corrector implicit method, which is a modification of the Crank–Nicholson method.
This method, however, is not found to be appropriate when very sharp discontinuities
occur in the wave profile. To circumvent the difficulties posed by such a discontinuity,
it is common to use what is known as a pseudospectral method. Its distinctive
characteristic is the method of evaluation of spatial derivatives. The spatial derivatives
are calculated with a very high degree of accuracy by means of finite Fourier
transforms, and it is precisely because of this that the method is appropriate for
the case of discontinuous profiles. The accuracy is controlled by the number of mesh
points used for the calculation of the Fourier transform. In contrast to what are called
spectral schemes, though, the nonlinear terms are not evaluated by convolution in
spectral space; hence the name pseudospectral. For the details on the implementation
of this method we refer the reader to the articles by Hammerton & Crighton(1989a, b),
which are, in turn, based on the work of Gazdag (1973).

All our calculations involve the use of double-precision arithmetic; for stability
considerations, we have simply followed the guidelines set out by Hammerton &
Crighton: if we make the time step smaller, the spatial step must decrease accordingly.
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Figure 4. Evolution of a steady Taylor shock profile with fluctuations introduced
behind the shock.

Typically, the time step will be �t =0.001 and the spatial step �x = 0.01. It is
important to choose a sufficiently small mesh size to be able to resolve shock details
in regions where the discontinuity is sharp; thus, for early stages of evolution, a
greater number of mesh points might be required (as a rule of thumb, at least ten
points should be used within a thin shock region). The mesh size can be increased as
the shock widens.

As we have seen in the previous section, a broadening of the shock region in the
mean profile will only be observed for some particular values of the parameters ε and
R−; for numerical analysis of this situation, we have, without loss of generality, fixed
U± = 1 and ν = 1/100. In this way, the parameters that now determine the structure
of the mean profile are the characteristic fluctuation amplitude u0 and the typical
frequency ω. The necessary condition for a significant broadening of the mean shock
profile to occur, (2.54), becomes

1 � 2500

(
u0

ω

)2

� 50

ω
. (3.1)

One set of parameters that satisfies condition (3.1) is u0 = 1/10 and ω = π/2; for this
particular region, all following results correspond to this set of parameters. In figure 4
we observe the evolution of a steady Taylor shock profile affected by the introduction
of small fluctuations, of amplitude u0 and frequency ω, behind the shock. Ideally,
these fluctuations would be introduced at a very large distance from the shock, but
since this would make the process very expensive from a computational standpoint,
we actually generate these fluctuations at x = −0.32, with the centre of the shock
located at x =0. The Taylor shock, when ν is sufficiently small, is essentially a step
function apart from the thin shock region, and thus almost constant away from
the centre of the shock. The position of the shock centre is defined as x0 such that
U (x0) = 0, where U is again the mean profile. The fluctuations travel to the right with
speed unity, until they reach the shock region and interact with it. At this point, the
shock centre starts moving as well, and we will later propose the hypothesis that this
movement of the shock centre, when averaged over one time period, is precisely what
causes the shock broadening we observe.
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Figure 5. Mean profile corresponding to region B: u0 = 1/10, ω = π/2.
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Figure 6. Shock profile averaged over one time cycle with (a) fixed axes, (b) axes moving
with the shock centre.

When we average this profile over one time cycle (in this case we have averaged over
the second cylcle, t =4 to t = 8), we observe the expected behaviour (see figure 3) for
the ξ =O(1) region; that is to say, a region where the gradient becomes significantly
smaller than in the Taylor shock solutions to which it is matched on either side. See
figure 5.

A very interesting result, however, was obtained when the averaging was done with
respect not to the fixed axes, but to axes moving with the shock centre. In this case,
what we obtain is exactly a Taylor shock, with no broadening of the shock whatsoever
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Figure 7. Position of the shock centre as a function of time: (a) actual position,
(b) prediction.

(see figure 6b). This suggests that this effect is only due to the movement of the shock
centre, and not to any essential structural change in the mean profile.

Thus, we could propose the following form for the mean profile:

〈U〉 =

〈
U+ tanh

[
U+

2ν
(x − x0(t))

]〉

=
U+ω

2π

∫ 2π/ω

0

tanh

[
U+

2ν
(x − x0(t))

]
dt, (3.2)

where x0(t) is the position of the shock centre, the trajectory of which, for the
parameters adopted throughout this section, is portrayed in figure 7(a). From weak
shock theory we know that in this case the speed of the shock is given by the following
equation:

ẋ0(t) =
u0

2
sin ω

(
t − x0

u0

)
, (3.3)

with the initial condition

x0(0) = 0. (3.4)

This equation can be solved algebraically to give the path of the shock centre for
any set of parameters. Introducing −y(t) = t −x0(t)/u0 the equation takes on the form

ẏ + 1 = − 1
2
sin ωy, (3.5)

with

y(0) = 0. (3.6)

This resulting equation is separable, so it is possible to integrate it in the following
manner:

d

dt

[∫
dy

1 + 1
2

sin ωy

]
= −dy

dt
.
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We use the standard substitution θ = tan(ωy/2) to integrate the left-hand side. The
solution is given, in terms of x0(t), by

x0(t) =
2u0

ω
arctan

[√
3

2
tan

(√
3ω

4
t +

π

6

)
− 1

2

]
+ u0 t. (3.7)

In figure 7 we plot both (a) the actual path followed by the shock centre in the
numerical simulation, and (b) the analytic solution obtained above. It is clear that,
although the predicted path of the shock centre’s movement does not exactly match
the actual trajectory, the shape of the curves and the order of the velocities involved
are very similar.

The mean profile would then be described in a general manner, for all sets of
parameters, by the following integral, which is given in (3.2), and into which we have
incorporated the explicit form of the shock path solution:

〈U〉 =
U+ω

2π

∫ 2π/ω

0

tanh


U+

2ν


x − 2u0

ω
arctan


 −2 tan

(
1
4

√
3 ωt

)
√

3 + tan
(

1
4

√
3 ωt

)

 − u0 t





 dt.

(3.8)

The usefulness of this integral form of the mean profile is, however, seriously
compromised by the obvious difficulty of performing the integration.

Returning to the set of parameters in region B that we have previously dealt
with (u0 = 1/10 and ω = π/2), we calculate the predicted value of the corresponding
gradient at the origin, β , as

β =
πω

q0

=
π3

2
 15.5,

but the value found from the numerical analysis is β  7, and the value of the gradient
outside this region reaches almost 25, so the desired effect is, in fact, observed, since
the gradient for the Taylor shock is given by βTaylor = U+/2ν =50. Experimenting with
averaging over different time cycles yields somewhat different results (although the
differences are small), so we suspect that after a long time has elapsed we might arrive
at a steady state. As time passes, the shock keeps moving to the right, so that for
very long times we might actually run out of space. To allow for as many cycles as
possible to be averaged within a given x interval (in this case, x ∈ [−2.56, 2.55]) we
take u0 = 1/20, so that the shock moves less rapidly. It then also becomes necessary
to adjust the value of ω, which we take to be π/4 in order that condition (3.1) be
satisfied. Although looking at the average mean profiles is not very helpful, looking
at their derivatives reveals that in general the steepest slope is achieved immediately
after the shock region is reached; the slope then increases steadily until it reaches a
maximum value, and then decreases again, although not down to the minimum level
arrived at before. This would seem to confirm that the inner solution defined in § 2.2
does not match onto the outer solution in a symmetric manner to either side of the
shock. In fact, although we have established that the solutions do match, the manner
in which they do so has not been specified. In figure 8 we plot both the first minimum
and the local maximum values for the first 16 time cycles.

We now observe that although the first local minimum value decreases with each
successive cycle, reaching a value of −30, the local maximum value, which we identify
with −β , stays more or less constant, at −7. In this case, for the parameters we
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Figure 8. Evolution of the first local minimum (×) and maximum (�) values over the first
16 time cycles. Averaging over time period T =8.

are using, the predicted value of β would be 15.5, so we must conclude that even
though the order of the ratio between β and the value expected without the effect of
the fluctuations is correct, and the sought behaviour is very noticeable, we are not
predicting the slopes within the shock region very accurately. It has been recently
suggested that some numerical diffusion might be the cause for this discrepancy.

The results of averaging when the parameters fall into regions A and C have been
confirmed by running numerical tests with parameters in these ranges: we obtain
undisturbed Taylor shocks, as expected.

4. Conclusions
Below we list some points which we think require further investigation, or which

merit further discussion:
(a) Equation (3.2) is evidently quite difficult to integrate, for almost any x0(t)

that would turn out to be relevant, but it still needs to be carefully analysed to
perhaps explain why it is that broadening of the shock region is only observed
for parameters such that (2.54) is satisfied. So far, it is only clear that very small
fluctuation amplitudes with ω = O(1), as well as relatively large amplitudes with very
small frequencies inhibit the type of behaviour seen above; it remains to explain why
this is so.

(b) The small-scale deformation represented by the minimum observed at ξ = −1
described in § 2.5 cannot be confirmed numerically using a mesh of the size used
to obtain the results in the previous sections. Consider that, according to the
change of variables (2.33), with ω = π/2 and u0 = 1/10, ξ = −1 corresponds roughly
to x = −1/1550; it is clear that our mesh is not sufficiently fine to adequately portray
any deformation at this scale.

(c) Finally, we call attention to the modification of the shape of a Taylor shock
caused by perturbations which contain very small amounts of energy, a fact reflected
clearly in the smallness of the parameter ε. The Taylor shock solution is constructed
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in such a way that it travels for an undetermined distance at a fixed velocity without
altering its shape. We also mentioned that for such a shock the most marked changes
in velocity and pressure occur in the vicinity of the shock itself. When the advected
perturbations enter this region, they are capable, depending on their amplitude and
characteristic frequency, of throwing off the equilibrium that keeps the shape of the
shock profile constant, although the precise manner in which this is done is not known.
The effect of this profile distortion is perhaps most noticeable in the shock rise time,
which in this case is of the order of 4ν for the unperturbed shock and of u2

0U+/πνω

for the broadened shock profile (only when the relevant parameters fall within region
B, as defined in § 2.4). The mechanisms which induce this thickening have not been
described, and further examination of integral (3.8) might yield interesting results in
this respect.
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